7. Mensuration

Concept corner for Exercise 7.1 and 7.2

Sl.No	Name	Figure	CSA (sq.units)	TSA (sq.units)	Volume (cu.units)
1	Right circular cylinder	h	2πrh	$2\pi r(h+r)$	$\pi r^2 h$
2.	Hollow cylinder	h	$2\pi h(R + r)$	$2\pi (R + r)$ $(R - r + h)$	$\pi (R^2 - r^2)$ (0r) $\pi (R+r)(R-r)$
3	Right circular cone	h	$\pi r l$ $\left(l = \sqrt{h^2 + r^2}\right)$	$\pi r(l+r)$	$\frac{1}{3}\pi r^2h$
4	Sphere		$4\pi r^2$	$4\pi r^2$	$\frac{4}{3}\pi r^3$
5	Hemisphere	r.	$2\pi r^2$	$3\pi r^2$	$\frac{2}{3}\pi r^3$
6	Hollow hemisphere		$2\pi(R^2+r^2)$	$\pi(3R^2+r^2)$	$\frac{2}{3}\pi(R^3-r^3)$
7	Frustum	h R I	$\pi(R+r)l$ $\left(l = \sqrt{h^2 + (R-r)^2}\right)$	$\pi l(R+r) + \pi R^2 + \pi r^2$	$\frac{1}{3}\pi h(R^2+r^2+Rr)$

Chapter 7 - Mensuration 413							
Sl.No	Name	Figure	CSA (sq.units)	TSA (sq.units)	Volume (cu.units)		
8	Hollow Sphere		$4\pi R^2 = $ Outer Surface area	$4\pi(R^2+r^2)$	$\frac{4}{3}\pi(R^3-r^3)$		
9	Cuboid		2h(l+b)	2(lb+bh+lh)	$l \times b \times h$		
10	Cube		4a ²	6a ²	a ³		

Introduction for Exercise 7.3

Concept corner

- > A combined solid is said to be a solid formed by combining two or more solids.
- > To calculate the surface area of the combined solid For example, if a cone is surmounted by a hemisphere, we need to just find out the C.S.A. of the hemisphere and C.S.A. of the cone separately and add them together.
- > The volume of the solid formed by joining two basic solids will be the sum of the volumes of the individual solids.

Introduction for Exercise 7.4

Concept corner

- When one solid is Melted, Re-casted, and Reshaped into another solid, Volume will not be changed.
- Finding the missing parameter by equalizing the volume
- If the question is asked like "How many" & "Numbers required", Required Number = $\frac{\text{Volume of Bigger Shape}}{\text{Volume of Smaller Shape}}$
- > Unit Conversion

10 cm = 1 dm. 100 cm = 1 m $1 \text{ cm}^3 = 1 \text{ ml}$ $1000 \text{ cm}^3 = 1 \text{ litre}$, $1000000 \text{ cm}^3 = 1\text{m}^3 = 1000 \text{ litres}$