7. Mensuration

Concept corner for Exercise 7.1 and 7.2

| Sl.No | Name |
| :---: | :---: | :---: | :---: | :---: | :---: |

Sl.No	Name	Figure	CSA (sq.units)	TSA (sq.units)	Volume (cu.units)
8	Hollow Sphere		$4 \pi R^{2}=$ Outer Surface area	$4 \pi\left(R^{2}+r^{2}\right)$	$\frac{4}{3} \pi\left(R^{3}-r^{3}\right)$
9	Cuboid		$2 h(l+b)$	$2(l b+b h+l h)$	$l \times b \times h$
10	Cube		$4 a^{2}$	$6 a^{2}$	a^{3}

Introduction for Exercise 7.3

Concept corner

$>$ A combined solid is said to be a solid formed by combining two or more solids.
$>$ To calculate the surface area of the combined solid
For example, if a cone is surmounted by a hemisphere, we need to just find out the C.S.A. of the hemisphere and C.S.A. of the cone separately and add them together. The volume of the solid formed by joining two basic solids will be the sum of the volumes of the individual solids.

Introduction for Exercise 7.4

Concept corner

> When one solid is Melted, Re-casted, and Reshaped into another solid, Volume will not be changed.
$>$ Finding the missing parameter by equalizing the volume
$>$ If the question is asked like "How many" \& "Numbers required",
Required Number $=\frac{\text { Volume of Bigger Shape }}{\text { Volume of Smaller Shape }}$
Unit Conversion
$10 \mathrm{~cm}=1 \mathrm{dm}, \quad 100 \mathrm{~cm}=1 \mathrm{~m}$
$1 \mathrm{~cm}^{3}=1 \mathrm{ml}$
$1000 \mathrm{~cm}^{3}=1$ litre , $1000000 \mathrm{~cm}^{3}=1 \mathrm{~m}^{3}=1000$ litres

